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Abstract
I review recent progress in defining a probability measure in the inflationary
multiverse. General requirements for a satisfactory measure are formulated
and recent proposals for the measure are clarified and discussed.

PACS numbers: 98.80.Bp, 98.80.Cq

1. Introduction

String theory appears to have a multitude of solutions describing vacua with different values
of the low-energy constants. The number of vacua in this vast ‘landscape’ of possibilities can
be as large as 10500 [1–3]. In the cosmological context, high-energy vacua drive exponential
inflationary expansion of the universe. Transitions between different vacua occur through
tunnelling and quantum diffusion, with regions of different vacua nucleating and expanding in
the never-ending process of eternal inflation [4, 5]. As a result, the entire landscape of vacua
is explored.

If indeed this kind of picture describes our universe, we will never be able to calculate
all constants of Nature from first principles. At best we may only be able to make statistical
predictions. The key problem is then to calculate the probability distribution for the constants.
It is often referred to as the measure problem.

The probability Pj of observing vacuum j can be expressed as a product

Pj = P
(prior)
j fj , (1)

where the prior probability P
(prior)
j is determined by the geography of the landscape and by

the dynamics of eternal inflation, and the selection factor fj characterizes the chances for an
observer to evolve in vacuum j . The distribution (1) gives the probability for a randomly
picked observer to be in a given vacuum.

It seems natural to identify the prior probability with the fraction of volume P
(V )
j occupied

by a given vacuum and the selection factor with the number of observers n
(obs)
j per unit volume1

[6],

1 The product in (1) should of course be properly normalized.
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Figure 1. A schematic conformal diagram for a comoving region in an eternally inflating universe.
Bubbles of different vacua are represented by different shades of grey. The upper boundary of the
diagram i+ is the future timelike infinity. A surface of constant global time � cuts through the
entire region and intersects many bubbles.

P
(prior)
j ∝ P

(V )
j , (2)

fj ∝ n
(obs)
j . (3)

This approach, however, encounters a severe difficulty: the result sensitively depends on the
choice of a spacelike hypersurface (a constant-time surface) on which the distribution is to be
evaluated. This problem was uncovered by Andrei Linde and his collaborators when they first
attempted to calculate volume distributions [7–9]. It eluded resolution for more than a decade,
but recently there have been some promising developments, and I believe we are getting close
to completely solving the problem. Here, I will briefly discuss the nature of the difficulty and
then review the new proposals for Pj . Most of this discussion is based on my work with Jaume
Garriga, Delia Schwartz-Perlov, Vitaly Vanchurin and Serge Winitzki [10, 11] (see also [12]).

2. Problem with global-time measure

The spacetime structure of an eternally inflating universe is schematically illustrated in
figure 1. For simplicity, we shall focus on the case where transitions between different
vacua occur only through bubble nucleation. The bubbles expand rapidly approaching the
speed of light, so their worldsheets are well approximated by light cones. Disregarding
quantum fluctuations, bubble interiors are open FRW universes [13]; they are often called
‘pocket universes’. If the vacuum inside a bubble has positive energy density, it becomes a
site of further bubble nucleation; we call such vacua ‘recyclable’. Negative-energy vacua, on
the other hand, quickly develop curvature singularities; we shall call them ‘terminal vacua’.

The diagram represents a comoving region, which is initially comparable to the horizon.
The initial moment is a spacelike hypersurface �0, represented by the lower horizontal
boundary of the diagram, while the upper boundary represents future infinity, when the region
and all the bubbles become infinitely large. How can we find the fraction of volume occupied
by different vacua? A natural thing to do is to consider a spacelike hypersurface �, which cuts
through the entire region, as shown in the figure. If t is a globally defined time coordinate,
then all surfaces t = const will have this property. One can use, for example, the proper time
along the ‘comoving’ geodesics orthogonal to the surface �0.2 Alternatively, one could use the
so-called scale factor time, defined as a logarithm of the expansion factor along the comoving
geodesics, or any other suitable time coordinate. Once the time coordinate is specified, one

2 The term ‘comoving’ is used very loosely here, since the vacuum does not define any rest frame. Any congruence
of geodesics orthogonal to a smooth spacelike surface �0 can be regarded as ‘comoving’.
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can find the fraction of volume occupied by different vacua on the surface t = const and then
take the limit t → ∞.

Unfortunately, as I have already mentioned, the result of this calculation is sensitively
dependent on one’s choice of the time coordinate [7]. The reason is that the volume of an
eternally inflating universe grows exponentially with time. The volumes of regions filled with
all possible vacua grow exponentially as well. At any time, a substantial part of the total
volume is in new bubbles which have just nucleated. Which of these bubbles are cut by the
surface depends on how the surface is drawn; hence the gauge dependence of the result. Since
time is an arbitrary label in General Relativity, none of the possible choices of the global time
coordinate appears to be preferred. For more discussion of this gauge-dependence problem,
see [14–16].

3. General requirements

At this point, it will be useful to formulate some general requirements that any satisfactory
definition of Pj should comply with [10].

First, we require that Pj should not depend on gauge, that is, on arbitrary choice of a
hypersurface. More generally, it should not depend on any arbitrary choices.

Second, we require that Pj should be independent of the initial conditions at the onset of
inflation. The dynamics of eternal inflation is an attractor; its asymptotic behaviour has no
memory of the initial state3. We believe that the probabilities should also have this property.
Note that this condition is not satisfied by an earlier proposal in [17] and by a more recent
proposal in [18].

4. A pocket-based measure

4.1. Bubble abundance pj

We shall now discuss the new proposal for Pj , introduced in [10]. The presentation here is
somewhat different from [10], but the essence is the same.

The idea is that instead of trying to compare volumes occupied by different vacua, we
compare the numbers of different types of bubbles (pocket universes). Thus, instead of
equation (2), we make the assignment

P
(prior)
j ∝ pj , (4)

where pj is the abundance of j -type bubbles. (We shall see later that the volume expansion
in this approach is accounted for in the selection factor fj .)

The definition of pj is a tricky business, because the total number of bubbles is infinite,
even in a region of a finite comoving size4. We thus need to introduce some sort of a cutoff.

The proposal of [10] is very simple: count only bubbles greater than a certain comoving
size ε, and then take the limit ε → 0. That is,

pj = lim
ε→0

Nj(>ε)

N(>ε)
. (5)

3 I assume that any vacuum is accessible through bubble nucleation from any other vacuum. Alternatively, if the
landscape splits into several disconnected domains which cannot be accessed from one another, each domain will be
characterized by an independent probability distribution.
4 The problem of calculating pj is somewhat similar to the question of what fraction of all natural numbers are odd.
The answer depends on how the numbers are ordered. With the standard ordering, 1, 2, 3, 4, . . . , the fraction of odd
numbers in a long stretch of the sequence is 1/2, but if one uses an alternative ordering 1, 3, 2, 5, 7, 4, . . . , the result
would be 2/3. One could argue that, in the case of integers, the standard ordering is more natural, so the correct
answer is 1/2. Here we seek an analogous ordering criterion for the bubbles.
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To define the comoving size, one has to specify a congruence of ‘comoving’ geodesics
emanating (orthogonally) from some initial spacelike hypersurface �0. As they extend to the
future, the geodesics will generally cross a number of bubbles before ending up in one of the
terminal bubbles, where inflation comes to an end. There will also be a (measure zero) set
of geodesics which never hit terminal bubbles. The starting points of these geodesics on �0

provide a mapping of the eternally inflating fractal [19–21], consisting of points on i+ where
inflation never ends. In the same manner, each bubble encountered by the geodesics will also
be mapped on �0, and we can define the comoving size of a bubble as the volume of its image
on �0. (The volume of a bubble is calculated including all the daughter bubbles that nucleate
within it.) Throughout this paper, we disregard bubble collisions.

I will now argue that the above prescription satisfies the requirements formulated in
section 3.

In an inflating spacetime, geodesics rapidly diverge, so bubbles formed at later times have
a smaller comoving size. (The comoving size of a bubble is set by the horizon at the time of
bubble nucleation.) The bubble counting can be done in an arbitrarily small neighbourhood δ

of any point belonging to the ‘eternal fractal’ image on �0. Every such neighbourhood (except
a set of relative measure zero) will contain an infinite number of bubbles of all kinds and will
be dominated by bubbles formed at very late times and having very small comoving sizes.
The resulting values of pj , obtained in the limit of bubble size ε → 0, will be the same in all
such neighbourhoods, because of the universal asymptotic behaviour of eternal inflation. The
same result will also hold in any finite-size region on �0 (provided that it contains at least one
‘eternal point’).

The values of pj are independent of the choice of the initial hypersurface �0. Once again,
this is a consequence of the universal, attractor behaviour of eternal inflation. Mathematically,
this is reflected in the fact that the asymptotic distributions obtained from the Fokker–Planck
equation (in the case of slow-roll models [4, 7, 22]) and from the master equation (in the case
of bubble nucleation models [23]) do not depend on the initial surface that was used to define
the comoving congruence5.

The condition of orthogonality between the congruence and the hypersurface �0 can be
relaxed. Suppose we change �0 while keeping the congruence fixed, so that the congruence
and �0 are no longer orthogonal. Once again, focusing on the vicinity of an eternal point,
any change of the hypersurface amounts to a constant rescaling of all bubble sizes and has no
effect on pj .

Moreover, although we use the metric on �0 to compare the bubble sizes, the results
are unaffected by arbitrary smooth transformations of the metric. Any such transformation
will locally be seen as a linear transformation, which amounts to a constant rescaling. In a
sufficiently small patch of �0, all bubble volumes are rescaled in the same way, so the bubble
counting should not be affected.

The results obtained using this method are also independent of the initial conditions at
the onset of eternal inflation. This simply follows from the facts that the bubble counting is
dominated by late times and that the asymptotic behaviour in eternal inflation is independent
of the initial state.

The calculation of bubble abundances, defined by equation (5), can be reduced to an
eigenvalue problem for a matrix constructed out of the transition rates between different vacua

5 Another way to see this is to consider a small patch of �0 including an eternal point. If the patch is small enough,
it can be regarded as flat. Then any change of �0 will amount to changing the orientation of its normal, that is,
the 4-velocity of the ‘comoving’ congruence. But since there is no preferred frame in the inflating de Sitter-like
spacetime, all choices will result in the same asymptotic behaviour and will yield identical values of pj .
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[10]6. This prescription has been tried on some simple models and appears to give reasonable
results [10, 25]. For example, if there is a single false vacuum, which can decay into a number
of vacua with nucleation rates �j , one finds

pj ∝ �j , (6)

as intuitively expected.

4.2. Eternal observers

Another interesting special case is that of full recycling. If all vacua have positive energy
density, ρj > 0, there are no terminal vacua and all geodesics of the congruence represent
‘eternal observers’, who endlessly transit from one vacuum to another, exploring the entire
landscape. The distribution pj in this case can be found in a closed form [11]:

pj ∝
∑

i

�ji eSi , (7)

where �ji is the nucleation rate of j -type bubbles in vacuum i, Si = π
/
H 2

i is the Gibbons–
Hawking entropy of de Sitter space and

Hj = (8πGρj/3)1/2 (8)

is the expansion rate corresponding to the local vacuum energy density ρj .
In the case of full recycling, the bubble abundance pj can also be defined as the frequency

at which j -type bubbles are visited along the worldline of an eternal observer. This definition
involves observations accessible to a single observer—a property that some string theorists
find desirable [2, 18]. It has been shown in [11] that this eternal-observer definition gives the
same result (7) as the pocket-based measure of [10].

For example, in the simplest case of only two vacua, equation (7) gives p1 ∝ �12 eS2 , p2 ∝
�21 eS1 , and using the property [26]

�ij /�ji = eSi−Sj , (9)

we obtain p1 = p2 = 0.5. This is, of course, in agreement with the frequency of visiting the
two vacua: the frequency should be the same, since the eternal observer goes back and forth
between them.

4.3. An equivalent proposal

An alternative prescription for pj has been suggested by Easther, Lim and Martin [27]. They
randomly select a large number N of points on a compact patch of a spacelike hypersurface
�0 in the inflating part of spacetime. They follow the geodesics emanating from these points
and check which bubbles they cross. The bubble abundance is then defined as

pj = lim
N→∞

Nj

N
, (10)

where Nj is the number of type-j bubbles crossed by at least one geodesic.
As the number of points is increased, the average distance δ between them on �0 gets

smaller, so most bubbles of comoving volume larger than ε ∼ δ3 are counted. In the limit of

6 The calculation in [10] assumes that the divergence of geodesics is everywhere determined by the local vacuum
energy density. This is somewhat inaccurate, since it ignores the brief transition periods following the bubble crossings
and the focusing effect of the domain walls. The accuracy of the method is expected to be up to factors O(1). A
more detailed discussion will be given elsewhere [24].
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N → ∞, we have ε → 0, and it is not difficult to see that this prescription is equivalent to
that described in the preceding subsection. (For a rigorous proof, see note added in [10].)

Easther et al argue that the values of pj in (10) are independent of the choice of measure
on �0. This is consistent with our analysis. They also argue that the initial velocities of the
worldlines on �0 can be chosen at random without affecting the pj . I think this statement
needs to be modified. If the velocities at neighbouring points are chosen independently, then
in the limit n → ∞ the velocity distribution on �0 will be very singular, and I see no reason
to expect that pj will remain unchanged. On the other hand, we do expect pj to be invariant
under continuous variations of the geodesic congruence, as explained in section 4.1.

4.4. Bousso’s proposal

Raphael Bousso [18] (see also [28]) suggested an extension of the prescription in [11] to the
case when there are some terminal bubbles, so the observers are generally not eternal. The
idea is to start with an ensemble of observers characterized by some initial distribution. All
observers, except a set of measure zero, will end up in terminal bubbles after visiting a certain
number of recyclable bubbles. Bousso’s proposal is that the measure pj should be proportional
to the total number of times the observers in the ensemble visit bubbles of type j .

The resulting measure is strongly dependent on the initial distribution function, so one
has to address the question of where that distribution comes from. Bousso suggests it might be
derived from the wavefunction of the universe �. The usual interpretation of � is that it gives
probabilities for different initial states as the universe nucleates out of nothing. The nucleation
is followed by eternal inflation, which produces an unlimited number of all possible bubbles,
so the initial state is quickly forgotten. Bousso’s proposal is based on a very different,
holographic view, which asserts that the region outside the horizon should be completely
excluded from consideration. Hence, one deals with an ensemble of disconnected horizon-
size regions nucleating out of nothing. For someone not initiated in holography, this view
is very hard to adopt, but as long as it is mathematically consistent, one can work out its
predictions and compare them with the data.

5. The selection factor fj

The selection factor fj should characterize the relative number of observers in different types
of pockets. As I already mentioned, the interior spacetime of a pocket is that of an open FRW
universe, so each pocket that has any observers in it has an infinite number of them. In order
to compare the numbers of observers, we will have to define a comoving length scale Rj on
which observers are to be counted in bubbles of type j . The first thing that comes to mind
is to set Rj to be the same for all bubbles. However, this is not enough. The expansion rate
is different in different bubbles, so the physical length scales corresponding to Rj will not
remain equal, even if they were equal at some moment. We could specify the times tj at which
Rj are set to be equal, but any such choice would be subject to the criticism of being arbitrary.

A possible way around this difficulty was proposed in [10]. At early times after nucleation,
the dynamics of open FRW universes inside bubbles is dominated by the curvature, with the
scale factor given by

aj (t) ≈ t (11)

for all types of bubbles. For example, for a quasi-de Sitter bubble interior,

aj (t) ≈ H−1
j sinh(Hj t), (12)
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where Hj is given by equation (8). The specific form of the scale factor at late times is not
important for our argument. The point is that for t � H−1

j all bubble spacetimes are nearly
identical, with the scale factor (11).

The proposal of [10] is that the reference scales should be chosen so that Rj are the
same at some small t = τ (same for all bubbles). The choice of τ is unimportant, as long as
τ � H−1

j for all j . Then, up to a constant, the physical length corresponding to Rj is

R
(phys)
j (t) = aj (t). (13)

For times t � H−1
j , this can be expressed as

R
(phys)
j (t) ≈ H−1

j Zj (t), (14)

where Zj is the expansion factor since the onset of the inflationary expansion inside the bubble(
t ∼ H−1

j

)
.

Alternatively, R(phys)
j in (14) can be identified as the curvature scale. It is the characteristic

large-scale curvature radius of the bubble universe. This definition makes no reference to early
times close to the bubble nucleation: the curvature radius can be found at any time. It is, in
principle, a measurable quantity.

The selection factor fj can thus be written as

fj ∝ nj , (15)

where nj is the number of observers who will evolve per unit comoving volume (normalized at
the same τ � H−1

j for all bubbles). The calculation of nj is of course a challenging problem;
I will not address it here.

It follows from equations (14) and (15) that large inflation inside bubbles is rewarded with
our definition of the measure. An inflationary expansion by a factor Z enhances the probability
by Z3.

6. Continuous variables

Our prescription for the measure can be straightforwardly generalized to the case when, in
addition to bubbles, there are some continuously varying fields X. Equation (4) for the prior is
replaced by

P
(prior)
j ∝ pj P̂j (X), (16)

where P̂j (X) is the normalized distribution for X in a bubble of type j at t = τ � H−1
j ,∫

P̂j (X) dX = 1. (17)

This distribution is determined by the dynamics of quantum fields X during inflation. It can
be calculated analytically or numerically, using the methods of [10, 29].

Equation (15) for the selection factor is replaced by

fj (X) ∝ nj (X). (18)

7. Discussion

The above definition of the measure is just a proposal. We have not derived it from first
principles. In fact, there is no guarantee that there is some unique measure that can be used
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for making predictions in the multiverse. How, then, can we ever know that we made the right
choice out of all possible options?

What I find encouraging is that even a single definition of measure that satisfies some basic
requirements proved very difficult to find. It is also reassuring that alternative prescriptions
suggested in [27] and [11] turned out to be equivalent to the pocket-based measure of [10].

Here, we required that the measure should not depend on any arbitrary choices, such as the
choice of gauge or of a spacelike hypersurface, and that it should be independent of the initial
conditions at the onset of inflation. These conditions, however, do not specify the measure
uniquely. For example, a flat measure, pj = const for all j , clearly satisfies the conditions.
It would be interesting to formulate a set of requirements which selects a unique definition of
the measure.

Bubbles of different types can generally collide with domain walls forming to separate
the different vacua. Our prescription for the measure needs to be generalized to include these
processes. Another necessary extension is to the case where transitions between vacua can
occur through quantum diffusion. (Some steps in this direction have been made in [10].)

The ultimate test of any proposed measure will be a comparison of its predictions with
observations. The first attempts in this direction have already produced some intriguing results
[25, 30–36].
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